
SLE 2024, Pasadena

Reducing Write Barrier Overheads
for Orthogonal Persistence

1

Yilin Zhang
University of Tokyo

Tomoharu Ugawa

University of Tokyo

Shigeru Chiba

University of Tokyo

Omkar Dilip Dhawal
IIT Madras

V. Krishna Nandivada

IIT Madras

Reducing Write Barrier
Overheads for Orthogonal
Persistence

2

Persistence
• Non-volatile memory (NVM)

• Intel Optane

• Objects in byte-addressable NVM can be accessed in the same way as those in
DRAM

• Faster than SSD but slower than DRAM

• Hybrid systems used in practice

3

Persistence
• Non-volatile memory (NVM)

• Intel Optane

• Objects in byte-addressable NVM can be accessed in the same way as those in
DRAM

• Faster than SSD but slower than DRAM

• Hybrid systems used in practice

• Issues

• Which objects must be made persistent ? When should the object become
persistent ?

• Tedious and error-prone task for programmers
4

Reducing Write Barrier
Overheads for Orthogonal
Persistence

5

Orthogonal Persistence
• Programmers can annotate static fields as durable roots

• Persistence of objects decided by reachability

6

Orthogonal Persistence
• Programmers can annotate static fields as durable roots

• Persistence of objects decided by reachability

• Objects reachable from persistent roots are copied to NVM without
programmer’s intervention (Replication-based object persistence)

7

[Matsumoto et al. 2022]

Orthogonal Persistence
• Persistence of objects decided by reachability

• Programmers can annotate static fields as persistent roots

• Objects reachable from persistent roots are copied to NVM without
programmer’s intervention

• Issues

• Java supports multi-threading

• Concurrent access: One thread is modifying an object while another thread
is attempting to copy it to NVM.

8

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 1: Replica of o is absent

9

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 1: Replica of o is absent

10

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 1: Replica of o is absent

11

Concurrent Access

12

Case 2: Replica of o is already present

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 2: Replica of o is present

13

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 2: Replica of o is present

14

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 2: Replica of o is present

15

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 2: Replica of o is present

16

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 2: Replica of o is present

17

Concurrent Access

18

Case 3: Instructions are reordered  
(x86 Weak memory consistency model)

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with
Write at Line 2

19

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with
Write at Line 2

20

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with
Write at Line 2

21

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with
Write at Line 2

22

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with
Write at Line 2

Copies inconsistent !!

23

Reducing Write Barrier
Overheads for Orthogonal
Persistence

24

[Matsumoto et al. 2022]

Write Barrier

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3 MFENCE

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

• MFENCE ensures all preceding
load and store instructions
become globally visible before
any that follow it.

• Writer-wait approach

• Issue - MFENCE is executed for
all field write instructions.

25

Write Barrier

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3 MFENCE

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

• MFENCE ensures all preceding
load and store instructions
become globally visible before
any that follow it.

• Writer-wait approach

26

Write Barrier

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3 MFENCE

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

• MFENCE ensures all preceding
load and store instructions
become globally visible before
any that follow it.

• Writer-wait approach

• Issue - MFENCE is executed for
all field write instructions.

27

Reducing Write Barrier
Overheads for Orthogonal
Persistence

28

Write Barrier Overhead
• All putfield instructions will execute

the write barrier

• Even if durable roots are absent, write
barrier is executed.

• Increases execution time of the
program

29

Write Barrier Overhead
• All putfield instructions will execute

the write barrier

• Even if durable roots are absent, write
barrier is executed.

• Increases execution time of the
program

• Average overhead of 43.7% on the
benchmarks in the absence of durable
roots.

30
Elapsed times normalised to standard HotSpot VM

Reducing Write Barrier
Overheads for Orthogonal
Persistence

31

Intuition
• Frequency of copying << Frequency of writing

• Shift the overhead to copier

• Copier thread performs a Handshake with all the threads and waits for
acknowledgement

• Copier thread performs copy only when Handshake is acknowledged

32

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with
Write at Line 2

33

do:
 for x in reachable from o:
 x.replica = allocate_in_NVM()
 handshake()
 for x in reachable from o:
 copy x to x.replica
until all reachable from o are copied

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

Case 3: Read at Line 4 is reordered with
Write at Line 2

34

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

do:
 for x in reachable from o:
 x.replica = allocate_in_NVM()
 handshake()
 for x in reachable from o:
 copy x to x.replica
until all reachable from o are copied

Concurrent Access

Copier Thread

 durable_root = o

Writer Thread (o.f = v)

Case 3: Read at Line 4 is reordered with
Write at Line 2

35

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Concurrent Access

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with
Write at Line 2

36

Copier Thread

 durable_root = o

// handshake

// copy

Concurrent Access

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with
Write at Line 2

37

Copier Thread

 durable_root = o

// handshake

// copy

Concurrent Access

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with
Write at Line 2

 GC safepoint

38

Copier Thread

 durable_root = o

do:
 for x in reachable from o:
 x.replica = allocate_in_NVM()
 handshake()
 for x in reachable from o:
 copy x to x.replica
until all reachable from o are copied

Concurrent Access

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with
Write at Line 2

39

Copier Thread

 durable_root = o

do:
 for x in reachable from o:
 x.replica = allocate_in_NVM()
 handshake()
 for x in reachable from o:
 copy x to x.replica
until all reachable from o are copied

Concurrent Access

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with
Write at Line 2

40

Copier Thread

 durable_root = o

do:
 for x in reachable from o:
 x.replica = allocate_in_NVM()
 handshake()
 for x in reachable from o:
 copy x to x.replica
until all reachable from o are copied

Does shifting overhead to the copier benefit
programs that rarely make objects persistent ?

41

No durable roots in program

Elapsed times normalised to standard HotSpot VM

writer-wait approach
43.7% overhead on average

copier-wait approach
10.6% overhead on average

42

What about programs that
frequently make objects persistent ?

43

Overheads of Copier-wait
• When objects are frequently made persistent, copier-wait approach has high

overheads

• Handshake overhead of 37.9 % compared to writer-wait approach when all
static fields are annotated as durable roots.

44

Overheads of Copier-wait
• When objects are frequently made persistent, copier-wait approach has high

overheads

• Handshake overhead of 37.9 % compared to writer-wait approach when all
static fields are annotated as durable roots.

• Do we always need handshake ?

45

Do we always need handshake ?

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

46

do:
 for x in reachable from o:
 x.replica = allocate_in_NVM()
 handshake()
 for x in reachable from o:
 copy x to x.replica
until all reachable from o are copied

Do we always need handshake ?

Writer Thread (o.f = v)

1 def putfield(o, f, v):

2 o[f] = v

3

4 o’ = o.replica

5 if o’ == NULL : return

6 make_persistent(v)

7 v’ = v.replica

8 o’[f] = v’

9 CLWB(&o’[f])

If all the objects reachable

from v (including) are, either

- Thread Local or

- Persistent

Then handshake can be elided

47

do:
 for x in reachable from o:
 x.replica = allocate_in_NVM()
 handshake()
 for x in reachable from o:
 copy x to x.replica
until all reachable from o are copied

Persistence-Aware Escape Analysis
• Combined Points-to-Escape analysis is used to identify thread-local abstract

objects

• Modify escape analysis to recognise a special abstract object 
- Persistent Object (P)

48

Persistence-Aware Escape Analysis
• Combined Points-to-Escape analysis is used to identify thread-local abstract

objects

• Modify escape analysis to recognise a special abstract object 
- Persistent Object (P)

• Escape Analysis 
 
x = A.durable_root x -> { E } 
 
y = x.f y -> { E } 
 
y.f = z y.f -> { E }  
 
t = new Thread(w) t -> { E } w -> { E }

49

Persistence-Aware Escape Analysis
• Combined Points-to-Escape analysis is used to identify thread-local abstract

objects

• Modify escape analysis to recognise a special abstract object 
- Persistent Object (P)

• Persistence-Aware Escape Analysis  
 
x = A.durable_root x -> { P } 
 
y = x.f y -> { P } 
 
y.f = z y.f -> { P }  
 
t = new Thread(w) t -> { E } w -> { E }

50

Example

51

White objects are thread-local objects

Example

52

White objects are thread-local objects

Was static analysis successful in
eliminating handshakes ?

53

Number of handshakes per second

54

Execution time

Execution time normalised to writer-wait approach

Static analysis eliminated 52%
overheads on average

Copier-wait slower by 2.4%
on average

55

Related Work
• AutoPersist [Shull et al. 2019] uses copier flag that is accessed atomically. Copier fails when

race is detected

• QuickCheck [Shull et al. 2019] and P-INSPECT [Kokolis et al. 2020] try to reduce the write barrier
overheads but fail to handle races.

• StaticPersist [Bansal 2023] uses static analysis to verify if programmer has correctly made the
objects persistent (No pointer from persistent object to volatile object)

56

Covered in the paper
• Explanation of how the transitive closure of an object is copied.

• Handle race between copier and writer [Ragged Synchronization]

• Synchronization for multiple copiers trying to copy same object

• Correctness Argument

• Additional overheads eliminated by Persistence-aware Escape analysis

• Flow functions for Persistence-aware Escape analysis

57

Conclusion
• Shifted the overheads from writer thread to copier thread

• 23% performance improvement on average for programs that rarely make
objects persistent

• Static analysis decreases 52% of persistence-related overheads in the copier-
wait approach

• Performance of copier-wait approach comparable (better in some case) to
writer-wait approach

58

Conclusion
• Shifted the overheads from writer thread to copier thread

• 23% performance improvement on average for programs that rarely make
objects persistent

• Static analysis decreases 52% of persistence-related overheads in the copier-
wait approach

• Performance of copier-wait approach comparable (better in some case) to
writer-wait approach

Thank You
59

