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Persistence
• Non-volatile memory (NVM)


• Intel Optane


• Objects in byte-addressable NVM can be accessed in the same way as those in 
DRAM


• Faster than SSD but slower than DRAM


• Hybrid systems used in practice
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Persistence
• Non-volatile memory (NVM)


• Intel Optane


• Objects in byte-addressable NVM can be accessed in the same way as those in 
DRAM


• Faster than SSD but slower than DRAM


• Hybrid systems used in practice


• Issues


• Which objects must be made persistent ? When should the object become 
persistent ? 


• Tedious and error-prone task for programmers
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Reducing Write Barrier 
Overheads for  Orthogonal 
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Orthogonal Persistence
• Programmers can annotate static fields as durable roots


• Persistence of objects decided by reachability
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Orthogonal Persistence
• Programmers can annotate static fields as durable roots 


• Persistence of objects decided by reachability


• Objects reachable from persistent roots are copied to NVM without 
programmer’s intervention (Replication-based object persistence) 
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[Matsumoto et al. 2022]



Orthogonal Persistence
• Persistence of objects decided by reachability


• Programmers can annotate static fields as persistent roots


• Objects reachable from persistent roots are copied to NVM without 
programmer’s intervention


• Issues


• Java supports multi-threading


• Concurrent access: One thread is modifying an object while another thread 
is attempting to copy it to NVM.
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Concurrent Access

Copier Thread 

  durable_root = o

Writer Thread (o.f = v)

1  def putfield( o, f, v ):

2        o[f] = v                       

3       

4        o’ = o.replica

5        if o’ == NULL : return

6        make_persistent(v)

7        v’ = v.replica

8        o’[f] = v’

9        CLWB(&o’[f])

Case 1: Replica of o is absent 
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Concurrent Access
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Case 2: Replica of o is already present 
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Concurrent Access

Copier Thread 
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Concurrent Access

Copier Thread 

 durable_root = o

Writer Thread (o.f = v)

1  def putfield( o, f, v ):

2        o[f] = v

3       
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Concurrent Access
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Case 3: Instructions are reordered   
(x86 Weak memory consistency model)



Concurrent Access

Copier Thread 

 durable_root = o

Writer Thread (o.f = v)

1  def putfield( o, f, v ):

2        o[f] = v

3       

4        o’ = o.replica             

5        if o’ == NULL : return

6        make_persistent(v)

7        v’ = v.replica

8        o’[f] = v’                     

9        CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with  
Write at Line 2  
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Concurrent Access

Copier Thread 

 durable_root = o

Writer Thread (o.f = v)

1  def putfield( o, f, v ):

2        o[f] = v                       

3       

4        o’ = o.replica

5        if o’ == NULL : return 

6        make_persistent(v)

7        v’ = v.replica

8        o’[f] = v’                     

9        CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with  
Write at Line 2  

Copies inconsistent !!
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Reducing  Write Barrier  
Overheads for Orthogonal 
Persistence 
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[Matsumoto et al. 2022]



Write Barrier

Copier Thread 

 durable_root = o

Writer Thread (o.f = v)

1  def putfield( o, f, v ):

2        o[f] = v                       

3        MFENCE

4        o’ = o.replica

5        if o’ == NULL : return 

6        make_persistent(v)

7        v’ = v.replica

8        o’[f] = v’                     

9        CLWB(&o’[f])

• MFENCE ensures all preceding 
load and store instructions 
become globally visible before 
any that follow it.


• Writer-wait approach


• Issue - MFENCE is executed for 
all field write instructions.
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Write Barrier

Copier Thread 
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load and store instructions 
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any that follow it.


• Writer-wait approach


• Issue - MFENCE is executed for 
all field write instructions.
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Reducing Write Barrier 
Overheads  for Orthogonal 
Persistence 
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Write Barrier Overhead
• All putfield instructions will execute 

the write barrier


• Even if durable roots are absent, write 
barrier is executed. 


• Increases execution time of the 
program
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Write Barrier Overhead
• All putfield instructions will execute 

the write barrier


• Even if durable roots are absent, write 
barrier is executed. 


• Increases execution time of the 
program


• Average overhead of 43.7% on the 
benchmarks in the absence of durable 
roots.

30
Elapsed times normalised to standard HotSpot VM



Reducing Write Barrier       
Overheads for Orthogonal 
Persistence  
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Intuition
• Frequency of copying << Frequency of writing


• Shift the overhead to copier


• Copier thread performs a Handshake with all the threads and waits for 
acknowledgement 

• Copier thread performs copy only when Handshake is acknowledged
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Concurrent Access

Copier Thread 

 durable_root = o

Writer Thread (o.f = v)

1  def putfield( o, f, v ):

2        o[f] = v

3       

4        o’ = o.replica             

5        if o’ == NULL : return

6        make_persistent(v)

7        v’ = v.replica

8        o’[f] = v’                     

9        CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with  
Write at Line 2  
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do:
  for x in reachable from o:               
        x.replica = allocate_in_NVM()
  handshake()
  for x in reachable from o:
        copy x to x.replica
until all reachable from o are copied

Concurrent Access

Copier Thread 

 durable_root = o   

Writer Thread (o.f = v)

Case 3: Read at Line 4 is reordered with  
Write at Line 2  
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1  def putfield( o, f, v ):

2        o[f] = v

3       
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Case 3: Read at Line 4 is reordered with  
Write at Line 2  
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1  def putfield( o, f, v ):

2        o[f] = v

3       

4        o’ = o.replica

5        if o’ == NULL : return

6        make_persistent(v)

7        v’ = v.replica

8        o’[f] = v’                     

9        CLWB(&o’[f])



Concurrent Access

Writer Thread (o.f = v)

1  def putfield( o, f, v ):

2        o[f] = v                       
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Case 3: Read at Line 4 is reordered with  
Write at Line 2  
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Copier Thread 

 durable_root = o   

// handshake

// copy 



Concurrent Access
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Copier Thread 

 durable_root = o   

// handshake

// copy 



Concurrent Access

Writer Thread (o.f = v)

1  def putfield( o, f, v ):

2        o[f] = v                       

3       

4        o’ = o.replica

5        if o’ == NULL : return 

6        make_persistent(v)

7        v’ = v.replica

8        o’[f] = v’                     

9        CLWB(&o’[f])

Case 3: Read at Line 4 is reordered with  
Write at Line 2  

  GC safepoint    
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Copier Thread 

 durable_root = o   

do:
  for x in reachable from o:               
        x.replica = allocate_in_NVM()
  handshake()                                    
  for x in reachable from o:
        copy x to x.replica
until all reachable from o are copied
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Copier Thread 

 durable_root = o   

do:
  for x in reachable from o:               
        x.replica = allocate_in_NVM()
  handshake()                                    
  for x in reachable from o:              
        copy x to x.replica                   
until all reachable from o are copied



Concurrent Access

Writer Thread (o.f = v)
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Copier Thread 

 durable_root = o   

do:   
  for x in reachable from o:               
        x.replica = allocate_in_NVM()
  handshake()                                    
  for x in reachable from o:              
        copy x to x.replica                   
until all reachable from o are copied



Does shifting overhead to the copier benefit 
programs that rarely make objects persistent ?
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No durable roots in program

Elapsed times normalised to standard HotSpot VM

writer-wait approach   
43.7% overhead on average 

copier-wait approach 
10.6% overhead on average
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What about programs that 
frequently make objects persistent ?
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Overheads of Copier-wait 
• When objects are frequently made persistent, copier-wait approach has high 

overheads


• Handshake overhead of 37.9 % compared to writer-wait approach when all 
static fields are annotated as durable roots.
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Do we always need handshake ?

Writer Thread (o.f = v)

1  def putfield( o, f, v ):

2        o[f] = v                       

3       

4        o’ = o.replica

5        if o’ == NULL : return 

6        make_persistent(v)

7        v’ = v.replica

8        o’[f] = v’                     

9        CLWB(&o’[f])
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do:
  for x in reachable from o:               
        x.replica = allocate_in_NVM()
  handshake()                      
  for x in reachable from o:
        copy x to x.replica
until all reachable from o are copied



Do we always need handshake ?

Writer Thread (o.f = v)

1  def putfield( o, f, v ):

2        o[f] = v                       

3       

4        o’ = o.replica

5        if o’ == NULL : return 

6        make_persistent(v)

7        v’ = v.replica

8        o’[f] = v’                     

9        CLWB(&o’[f])

If all the objects reachable 

from v (including) are, either

- Thread Local or

- Persistent

Then handshake can be elided

47

do:
  for x in reachable from o:               
        x.replica = allocate_in_NVM()
  handshake()                      
  for x in reachable from o:
        copy x to x.replica
until all reachable from o are copied



Persistence-Aware Escape Analysis
• Combined Points-to-Escape analysis is used to identify thread-local abstract 

objects


• Modify escape analysis to recognise a special abstract object 
- Persistent Object ( P )
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Persistence-Aware Escape Analysis
• Combined Points-to-Escape analysis is used to identify thread-local abstract 

objects


• Modify escape analysis to recognise a special abstract object 
- Persistent Object ( P )


• Escape Analysis 
 
x = A.durable_root                             x -> { E } 
 
y = x.f                                                 y -> { E } 
 
y.f  = z                                               y.f -> { E }  
 
t = new Thread(w)                               t -> { E }   w -> { E }
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• Modify escape analysis to recognise a special abstract object 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• Persistence-Aware Escape Analysis  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y = x.f                                                 y -> { P } 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Example
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White objects are thread-local objects



Example
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White objects are thread-local objects



Was static analysis successful in 
eliminating handshakes ?
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Number of handshakes per second
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Execution time

Execution time normalised to writer-wait approach

Static analysis eliminated 52%  
overheads on average 

Copier-wait slower by 2.4%  
on average
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Related Work
• AutoPersist [Shull et al. 2019]  uses copier flag that is accessed atomically. Copier fails when 

race is detected


• QuickCheck [Shull et al. 2019] and P-INSPECT [Kokolis et al. 2020] try to reduce the write barrier 
overheads but fail to handle races.


• StaticPersist [Bansal 2023] uses static analysis to verify if programmer has correctly made the 
objects persistent (No pointer from persistent object to volatile object)
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Covered in the paper
• Explanation of how the transitive closure of an object is copied.


• Handle race between copier and writer [ Ragged Synchronization ]


• Synchronization for multiple copiers trying to copy same object


• Correctness Argument


• Additional overheads eliminated by Persistence-aware Escape analysis


• Flow functions for Persistence-aware Escape analysis
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Conclusion
• Shifted the overheads from writer thread to copier thread


• 23% performance improvement on average for programs that rarely make 
objects persistent


• Static analysis decreases 52% of persistence-related overheads in the copier-
wait approach


• Performance of copier-wait approach comparable (better in some case) to 
writer-wait approach
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Conclusion
• Shifted the overheads from writer thread to copier thread


• 23% performance improvement on average for programs that rarely make 
objects persistent


• Static analysis decreases 52% of persistence-related overheads in the copier-
wait approach


• Performance of copier-wait approach comparable (better in some case) to 
writer-wait approach

Thank You
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