Collecting Type Information Using Unit Tests
for Customizing JavaScript VMs

work-in-progress report on eJS project

Tomoharu Ugawa'! Hideya lwasaki?2 Takafumi Kataoka

1 Kochi University of Technology 2 The University of Electro-Communications

@ e K LARHR S UEC %j%;%{gif_ﬁ
=1 [. |

KOcCHI UNIVERSITY OF TECHNOLOGY b om0

edS: JavaScript VM for loT

e Goal: make loT programing easier for many people
 Why JavaScript

e JavaScript is popular

e suitable for prototyping
e Challenge

* Reduce VM footprint

JavaScript engines for loT

e DukTape
* Espruino
e JerryScript
e MudS

e v//mJS

JavaScript engines for loT

Quick]JS Javascript Engine
 DukTape
News

e Espruino e 2019-07-09:

o First public release

° Dt
Jerryscrip Introduction

e MudS Quick]S is a small and embeddable Javascript engine. It supports the
ES2019 specification including modules, asynchronous generators and
proxies.

e v//mJS

* QuickdS

JavaScript engines for loT

Quick]JS Javascript Engine
 DukTape
News

e Espruino e 2019-07-09:

o First public release

° Dt
Jerryscrip Introduction

e MudS Quick]S is a small and embeddable Javascript engine. It supports the
ES2019 specification including modules, asynchronous generators and
proxies.

e v//mJS

e QuickJS e support all features of JS, or
e support features selected by VM developer

Specialization

Assumptions
* Applications on an embedded system are fixed

* Each application uses a subset of JavaScript features

Specialization

Assumptions
* Applications on an embedded system are fixed

* Each application uses a subset of JavaScript features

Our approach
 Generate a specialized VM for each set of applications

e Give up supporting other applications

APP1 APP2 APP1 APP2 YR

rash
VM ; VM crasn
] (or fallback)

Fully-featured JavaScript VM Subset JavaScript VM for APP1 & APP2

Overview of edS

target zle

ation B

\/ extract

requirements

eJS Toolkit l

specification of specialized
full-featured VM
JavaScript VM specialize

Overview of edS

ap
t?‘rge.t ation B
applications | gpplication A
\/ extract
requirements
edS Toolkit 1
specification of
full-featured
JavaScript VM specialize

compile

i appA appB appC

specialized
VM

Overview of edS

ap
t?rge.t ation B
applications | gpplication A
- compile
extract
requirements
eJSToolkit 1 ____________________ appA appB appC
specification of specialized
full-featured VM
JavaScript VM specialize’ it

Accuracy of Requirements

Extract accurate requirements of applications

features
application uses

Accuracy of Requirements

Extract accurate requirements of applications

e t0O conservative
— large VM is generated

features
application uses

Accuracy of Requirements

Extract accurate requirements of applications

* too conservative
— large VM is generated
features
* missing features application uses
— VM may crash or expensive fallback

Operator Overloading

* Number + Number = Number
e Number + String = String

e Number + Boolean = Number

Operator Overloading

* Number + Number = Number
e Number + String = String

e Number + Boolean = Number

switch(type(v1)) {
case NUM:
switch (type(v2)) {
case NUM:
dst = NUM(val(v1) + val(v2));
break;
case STR:
vl = ToString(v1);
dst = concat(v1, v2);
break;

}
case STR;:

ADD instruction

Size Reduction by Specialization

 Exclude code for unused operations

e Simplify dispatching code

switch(type(v1)) { switch(type(v1)) {
case NUM: case NUM:
switch (type(v2)) { dst = NUM(val(v1) + val(v2));
case NUM: break;
dst = Num(val(v1) + val(v2)); case STR;:
break; dst = concat(v1, v2);
case STR: break;
vl = toStr(v1); }
dst = concat(v1, v2);
break: Specialized Interpreter
\ (Only supports NUM+NUM & STR+STR)
}
case STR: ~
Code for unused operation (NUM + STR)

Application’s F

equirement = Type Information

Operand Specification

e combinations of operand datatypes of each instruction

SU

ADD(NUM, NUM) -> accept
ADD(STR, STR) -> accept
ADD(_, _) -> error operand specification

B(NUM, NUM) -> accept

eJS Toolkit

specification of
full-featured
JavaScript VM

l specialized
VM

specialize

Collecting Type Information

* Type inference

* Profiling

Problem

* |nput to application

®* parameters, sensor responses, events, ...

9events

y —— APP

* large space to be explored

X ——>

z —_—

T T T Sensor.get()
Sensor

Problem

* |nput to application

®* parameters, sensor responses, events, ...

* large space to be explored

e Execution environment 9events

X ——>

e real hardware is needed
to execute application

— APP

T T T Sensor.get()
Sensor

Solution: Unit tests

describe(”test”, function() {

function getTemp() {
var s = ();
¢ = Number(“0x” + s);
f =(c*9/5)+ 32;
return f;

}

application in question

“00” — 32
“/E” — 86

1

it(“getTemp”, function() {

var ret = getTemp();
expect(ret).toBe(32);
success += (ret === 32);

1;

it(“string”, function() {

var ret = getTemp();
expect(ret).toBe(86);
success += (ret === 86);

test cases using

Jasmine unit test framework

Profiling Framework

pseudo-

9 Jasmine
profiling
VM

Profiling Framework

application >
PP string_log r3 "ox"

¢ = Number(“Ox” + s); compile add_log rl r3 rl
— with log flag =
fixnum r4 32
testcase eq r3 r3 r4
add r2 r2 r3
success += (ret === 32);
pseudo- compile
@9 Jasmine
, — . profiling
record operand datatypes VM

of each instruction
if log flag is set

Experiment

JavaScript programs

+ morse (113 LOC)

78 99.8%

e ported from C

 humidity and temperature meter (HT) (459 LOC)

®* main module test LOC coverage

main 113 87.4%
sensor 170 66.0%
* sensor — ported from Python LCD 99 77.1%
total 382 77.4%

e LCD — ported from C

Result

W fully-featured
 Generated operand Interpreter Size (KB) | inference

specifications were correct profiling

20
e VM size
15
e fully-featured VM
* conservative type inference 10
e abstract interpretation
of bytecode S
e profiling
0

better morse

Advantage & Disadvantage

e Advantage
e free — users do not need to create extra stuff
* practical — we can do on desktop computer
* no overestimation

e Disadvantage
e unsound

e accuracy depends on quality of test cases

Conclusion and Future Work

* Framework to collect application requirements
* Observe executions of unit tests
e Future Work

e Combination with type inference

 Measure quality of test suite — coverage?

