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Weak Pointers
• Weak pointers are a mechanism to allow mutators to 

communicate with GC

• java.lang.ref.Reference

• Specification requires us to process weak references 
atomically from the view point of mutators

• Fully concurrent (on-the-fly) GC never stops all 
mutators



Java reference types
• Strong - usual references. 

• Soft - used for caches that the GC can reclaim.

• Weak - used for canonicalize mappings (e.g., interned 
strings) that do not prevent GC from reclaiming their 
keys or values.

• Phantom - used for scheduling pre-mortem cleanup 
actions more flexibility than finalisers.
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Java reference types
• Strong - usual references. 

• Soft - used for caches that the GC can reclaim.

• Weak - used for canonicalize mapping (e.g., interned 
strings) that do not prevent GC from reclaiming their 
keys or values.

• Phantom - used for scheduling pre-mortem cleanup 
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stronger

weaker

reduce to strong/weak references

no interaction with mutators



Reachability strongly
reachable

Strongly - can be reached without traversing any 
other references. 
Weakly - not strongly reachable but can be 
reached by traversing weak references.

• No formal specification

• Specification is written in English.

• There are errors in implementations

• We formalised the specification
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strongly
reachableGC actions

The GC finds all strongly reachable objects and 
reclaims others.

The GC “clears” references whose referents are 
weakly reachable.

• Weak reference to Strongly - to be retained

• Weak reference to Weakly - to be cleared

root



strongly
reachableReference.get()

Reference.get() - returns a strong reference to its 
target or null if the GC has cleared.

get() may make some objects that were weakly 
reachable strongly reachable.
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Reference.get() - returns a strong reference to its 
target or null if the GC has cleared.

get() may make some objects that were weakly 
reachable strongly reachable.
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Race

• Collector clears weak reference A

A BO



Race

• Collector clears weak reference A

A BO
get()



Race

• Collector clears weak reference A
• Mutator makes O strongly reachable by creating a strong 

reference to the upstream

A O B
get()



from the OpenJDK mailing list
“I've  been  tuning  a  Java  7u51,  Solaris  10,  T4  system  
with  24G  heap.    My  customer  is  not  very  happy  with  
the  remark  pauses  of    up  to  2  seconds.” Thomas  Viessmann

“It  looks  like  the  application  is  using  a  
lot  of  Reference  objects.  The  time  
spent  in  remark  is  dominated  by  
reference  processing.” Bengt Rutisson
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Solutions
• Stop the world - Pauseless GC [Click et al., 2005], Staccato 

[McCloskey et al., 2008]

• Stop all mutators and process references

• Lock - “On-the-fly” GC [Domani et al., 2000]

• Block any mutator that calls get()

• On-the-fly - Metronome-TS [Auerbach et al., 2008]

• Implementation technique is not public



GC and mutator race in TRACING

• GC want to finish tracing and then start clearing

• Mutator force GC to do more work

Global GC State

NORMAL TRACING CLEARING

REPEAT

get() start tracing

no tracing workstart tracing

by collector

by collector (atomic)

by mutator (atomic)

GC traces strongly 
reachable objects



• GC traverses strong references 

• to colour strongly reachable objects black

• Write barrier

• insertion barrier [Dijkstra]

• deletion barrier (a.k.a. snapshot) [Yuasa]

• Read barrier for Reference.get()

TRACING State

NORMAL TRACING CLEARING

REPEAT



• GC traverses strong references 

• to colour strongly reachable objects black

• Write barrier

• insertion barrier [Dijkstra]

• deletion barrier (a.k.a. snapshot) [Yuasa]

• Read barrier for Reference.get()

TRACING State

NORMAL TRACING CLEARING

REPEAT



Insertion Barrier
INVARIANT: Root is grey (allows root to refer 
to white objects)

• GC repeat tracing until it finds root black

• Reference.get() changes the state to REPEAT 
to notify the GC that the root may not be 
black NORMAL TRACING CLEARING

REPEAT

get()
root



Deletion Barrier
INVARIANT: Root is black --- root is never rescanned

• Reference.get() colours target grey

• Reference.get() changes the state to REPEAT
to notify the GC that the root may not be
black NORMAL TRACING CLEARING

REPEAT

get()
root



CLEARING
Once GC enters CLEARING state

• Reference.get() returns null if its target is white

• no more objects become strongly reachable

• GC clears weak references whose targets
are white NORMAL TRACING CLEARING

REPEAT

get() returns null



Evaluation
• Jikes RVM

• Sapphire on-the-fly copying collector

• Trigger GC immediately after the previous GC 
completes

• Configuration

• Core i7-4770 (4-core, 3.4 GHz)

• 1 GB heap

• 2 collector threads



• Stop-the-world GC, or

• Block mutator.get() with “lock”

Pause Time distribution
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Reference Processing
 Phase Time
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Conclusion
• Reference types are frequently used in a significant 

number of programs.

• On-the-fly GC must not ignore reference types.

• Formalised the definition of reference types.

• On-the-fly reference processing.

• Model checked with SPIN.

• Implemented in Jikes RVM.

• On-the-fly reference processing phases are longer in the 
worst case, but with deletion barrier, not by much.

• Overall execution time is not increased significantly by 
processing references on-the-fly, and is often reduced.

http://github.com/perlfu/sapphire



Questions?
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• Model checked with SPIN

• Correctness:
appears to mutators to be processed by GC atomically

• Terminates only with deletion barrier

Model Checking
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Figure 7: The model

while(true) {
int i = random.nextInt(5);
switch (i) {
case 0: x = vr0.get(); break;
case 1: x = vr1.get(); break;
case 2: x = vr2.get(); break;
case 3: if (x != null) x = x.next; break;
case 4: x = null; break;

}
}

Figure 8: Simple mutator

since o is weakly-reachable through w, the mutator may also see o,
contrary to P2.!

Since bounded model checking does not deal with infinite state,
we checked the properties for the limited model shown in Fig. 7.
This model has three pairs of reference and normal objects, namely
r0, r1, r2 for references and o0, o1, o2 for the corresponding nor-
mal objects. These normal objects are linked in a list, but there are
no other strong references to them. We assumed that all reference
objects remain directly strongly reachable from the root and that
the mutator can always call get() methods on them.

Fig. 8 shows the mutator’s pseudocode: vri is a local variable
whose value is a reference object ri, and x is another local variable.
The mutator repeatedly and arbitrarily calls a get() method to load
the referent to x, loads the ‘next’ object of x, or clears x. Since we
focus on the behaviour of references, the mutator does not write to
any object. Thus, our model does not have write barriers.

Fig. 9 shows the model of the get() method on the reference
object ri, for a collector using an insertion barrier. This model is
faithful to Fig. 4. The return value is passed to the caller through
the parameter ret . mark[i] and CLEARED[i] represent the colour of
oi and whether ri has been cleared or not, respectively. When get()
returns oi, it sets i to ret . In order to check P2, the model also puts
i and ret in global variables getRef_arg and getRef_ret.

For the collector side, our model is faithful to the pseudocode
in Fig. 3 and 5. At the end of a cycle, the collector reclaims white
objects by calling reclaim(): we introduce a fourth object state
RECLAIMED. Our model of reclaim() reclaims white objects and
reverts the black objects to white. P1 and P2 can be interpreted as:

P1 !((x != NULL) =⇒ (mark[x] != RECLAIMED))

P2 !(RETNULLi =⇒ ¬♦(x = i)) (i = 1, 2, 3)

where RETNULLi ≡(getRef_arg= i)∧ (getRef_ret= NULL).
We have model checked these properties with models both for

collectors with an insertion barrier and a deletion barrier. We also
tried to model check the termination property.

P3 (Termination) GC eventually terminates.

inline getRef(i, ret) {
do::(refState == NORMAL ||

refState == REPEAT) ->
if::CLEARED[i] -> ret = NULL

::else -> ret = i
fi;
break

::(refState == TRACING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

CAS(refState, TRACING, REPEAT)
/* continue */

::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i;
break

::else ->
ret = NULL;
break

fi
::(refState == CLEANING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

ret = NULL
::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i

::else -> ret = NULL
fi;
break

od;
d_step { /* d_step is an atomic action */

getRef_arg = i;
getRef_ret = ret

};
}

Figure 9: Promela model of a Reference.get() method with an
insertion barrier

However, we found that, with an insertion barrier, the mutator
can continually prevent the collector from breaking out of the
termination loop, even if we assume weakly fair scheduling. The
reason for this is that, while the collector is tracing or checking
if the work queue is empty, a mutator has a chance to load a
white referent to a local variable x and then clear x. The mutator
changes refState to REPEAT when it loads a reference with get(),
thus forcing the collector to trace again. However, if the mutator
has cleared x, the collector will not find, and hence shade, a new
white referent: the number of white objects is not reduced and so
no progress is made. Fortunately, the deletion barrier version does
make progress, since get() shades white objects grey.

7. Evaluation
We built our OTF reference processing framework in Jikes RVM
and evaluated it with our new implementation of the Sapphire col-
lector [12], running DaCapo benchmarks that would run (10 from
the 2006 and 6 from the 2009 suite). All measurements were per-
formed on a 4-core, 3.4 GHz Intel Core i7-4770 CPU running
Ubuntu Linux 12.04.4.

7.1 Reference Type Usage
To understand the behaviour of the benchmarks, we measured how
often reference types were used. Fig. 10 shows the number of calls
of a get() method per second in each 10 ms time window; the x-
axis is the normalised elapsed time of the program.



Properties
• No dangling pointer is created

• If a variable is not null, its target has not been reclaimed

• Once get() of a Reference returns null, it will never 
returns its target
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case 1: x = vr1.get(); break;
case 2: x = vr2.get(); break;
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Figure 8: Simple mutator

since o is weakly-reachable through w, the mutator may also see o,
contrary to P2.!

Since bounded model checking does not deal with infinite state,
we checked the properties for the limited model shown in Fig. 7.
This model has three pairs of reference and normal objects, namely
r0, r1, r2 for references and o0, o1, o2 for the corresponding nor-
mal objects. These normal objects are linked in a list, but there are
no other strong references to them. We assumed that all reference
objects remain directly strongly reachable from the root and that
the mutator can always call get() methods on them.
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The mutator repeatedly and arbitrarily calls a get() method to load
the referent to x, loads the ‘next’ object of x, or clears x. Since we
focus on the behaviour of references, the mutator does not write to
any object. Thus, our model does not have write barriers.

Fig. 9 shows the model of the get() method on the reference
object ri, for a collector using an insertion barrier. This model is
faithful to Fig. 4. The return value is passed to the caller through
the parameter ret . mark[i] and CLEARED[i] represent the colour of
oi and whether ri has been cleared or not, respectively. When get()
returns oi, it sets i to ret . In order to check P2, the model also puts
i and ret in global variables getRef_arg and getRef_ret.

For the collector side, our model is faithful to the pseudocode
in Fig. 3 and 5. At the end of a cycle, the collector reclaims white
objects by calling reclaim(): we introduce a fourth object state
RECLAIMED. Our model of reclaim() reclaims white objects and
reverts the black objects to white. P1 and P2 can be interpreted as:
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tried to model check the termination property.

P3 (Termination) GC eventually terminates.

inline getRef(i, ret) {
do::(refState == NORMAL ||
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if::CLEARED[i] -> ret = NULL

::else -> ret = i
fi;
break

::(refState == TRACING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

CAS(refState, TRACING, REPEAT)
/* continue */

::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i;
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::else ->
ret = NULL;
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fi
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fi;
break

od;
d_step { /* d_step is an atomic action */

getRef_arg = i;
getRef_ret = ret

};
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Figure 9: Promela model of a Reference.get() method with an
insertion barrier

However, we found that, with an insertion barrier, the mutator
can continually prevent the collector from breaking out of the
termination loop, even if we assume weakly fair scheduling. The
reason for this is that, while the collector is tracing or checking
if the work queue is empty, a mutator has a chance to load a
white referent to a local variable x and then clear x. The mutator
changes refState to REPEAT when it loads a reference with get(),
thus forcing the collector to trace again. However, if the mutator
has cleared x, the collector will not find, and hence shade, a new
white referent: the number of white objects is not reduced and so
no progress is made. Fortunately, the deletion barrier version does
make progress, since get() shades white objects grey.

7. Evaluation
We built our OTF reference processing framework in Jikes RVM
and evaluated it with our new implementation of the Sapphire col-
lector [12], running DaCapo benchmarks that would run (10 from
the 2006 and 6 from the 2009 suite). All measurements were per-
formed on a 4-core, 3.4 GHz Intel Core i7-4770 CPU running
Ubuntu Linux 12.04.4.

7.1 Reference Type Usage
To understand the behaviour of the benchmarks, we measured how
often reference types were used. Fig. 10 shows the number of calls
of a get() method per second in each 10 ms time window; the x-
axis is the normalised elapsed time of the program.
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case 1: x = vr1.get(); break;
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we checked the properties for the limited model shown in Fig. 7.
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The mutator repeatedly and arbitrarily calls a get() method to load
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focus on the behaviour of references, the mutator does not write to
any object. Thus, our model does not have write barriers.

Fig. 9 shows the model of the get() method on the reference
object ri, for a collector using an insertion barrier. This model is
faithful to Fig. 4. The return value is passed to the caller through
the parameter ret . mark[i] and CLEARED[i] represent the colour of
oi and whether ri has been cleared or not, respectively. When get()
returns oi, it sets i to ret . In order to check P2, the model also puts
i and ret in global variables getRef_arg and getRef_ret.

For the collector side, our model is faithful to the pseudocode
in Fig. 3 and 5. At the end of a cycle, the collector reclaims white
objects by calling reclaim(): we introduce a fourth object state
RECLAIMED. Our model of reclaim() reclaims white objects and
reverts the black objects to white. P1 and P2 can be interpreted as:

P1 !((x != NULL) =⇒ (mark[x] != RECLAIMED))

P2 !(RETNULLi =⇒ ¬♦(x = i)) (i = 1, 2, 3)

where RETNULLi ≡(getRef_arg= i)∧ (getRef_ret= NULL).
We have model checked these properties with models both for

collectors with an insertion barrier and a deletion barrier. We also
tried to model check the termination property.

P3 (Termination) GC eventually terminates.

inline getRef(i, ret) {
do::(refState == NORMAL ||

refState == REPEAT) ->
if::CLEARED[i] -> ret = NULL

::else -> ret = i
fi;
break

::(refState == TRACING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

CAS(refState, TRACING, REPEAT)
/* continue */

::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i;
break

::else ->
ret = NULL;
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fi
::(refState == CLEANING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

ret = NULL
::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i

::else -> ret = NULL
fi;
break

od;
d_step { /* d_step is an atomic action */

getRef_arg = i;
getRef_ret = ret

};
}

Figure 9: Promela model of a Reference.get() method with an
insertion barrier

However, we found that, with an insertion barrier, the mutator
can continually prevent the collector from breaking out of the
termination loop, even if we assume weakly fair scheduling. The
reason for this is that, while the collector is tracing or checking
if the work queue is empty, a mutator has a chance to load a
white referent to a local variable x and then clear x. The mutator
changes refState to REPEAT when it loads a reference with get(),
thus forcing the collector to trace again. However, if the mutator
has cleared x, the collector will not find, and hence shade, a new
white referent: the number of white objects is not reduced and so
no progress is made. Fortunately, the deletion barrier version does
make progress, since get() shades white objects grey.

7. Evaluation
We built our OTF reference processing framework in Jikes RVM
and evaluated it with our new implementation of the Sapphire col-
lector [12], running DaCapo benchmarks that would run (10 from
the 2006 and 6 from the 2009 suite). All measurements were per-
formed on a 4-core, 3.4 GHz Intel Core i7-4770 CPU running
Ubuntu Linux 12.04.4.

7.1 Reference Type Usage
To understand the behaviour of the benchmarks, we measured how
often reference types were used. Fig. 10 shows the number of calls
of a get() method per second in each 10 ms time window; the x-
axis is the normalised elapsed time of the program.root
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while(true) {
int i = random.nextInt(5);
switch (i) {
case 0: x = vr0.get(); break;
case 1: x = vr1.get(); break;
case 2: x = vr2.get(); break;
case 3: if (x != null) x = x.next; break;
case 4: x = null; break;

}
}

Figure 8: Simple mutator

since o is weakly-reachable through w, the mutator may also see o,
contrary to P2.!

Since bounded model checking does not deal with infinite state,
we checked the properties for the limited model shown in Fig. 7.
This model has three pairs of reference and normal objects, namely
r0, r1, r2 for references and o0, o1, o2 for the corresponding nor-
mal objects. These normal objects are linked in a list, but there are
no other strong references to them. We assumed that all reference
objects remain directly strongly reachable from the root and that
the mutator can always call get() methods on them.

Fig. 8 shows the mutator’s pseudocode: vri is a local variable
whose value is a reference object ri, and x is another local variable.
The mutator repeatedly and arbitrarily calls a get() method to load
the referent to x, loads the ‘next’ object of x, or clears x. Since we
focus on the behaviour of references, the mutator does not write to
any object. Thus, our model does not have write barriers.

Fig. 9 shows the model of the get() method on the reference
object ri, for a collector using an insertion barrier. This model is
faithful to Fig. 4. The return value is passed to the caller through
the parameter ret . mark[i] and CLEARED[i] represent the colour of
oi and whether ri has been cleared or not, respectively. When get()
returns oi, it sets i to ret . In order to check P2, the model also puts
i and ret in global variables getRef_arg and getRef_ret.

For the collector side, our model is faithful to the pseudocode
in Fig. 3 and 5. At the end of a cycle, the collector reclaims white
objects by calling reclaim(): we introduce a fourth object state
RECLAIMED. Our model of reclaim() reclaims white objects and
reverts the black objects to white. P1 and P2 can be interpreted as:

P1 !((x != NULL) =⇒ (mark[x] != RECLAIMED))

P2 !(RETNULLi =⇒ ¬♦(x = i)) (i = 1, 2, 3)

where RETNULLi ≡(getRef_arg= i)∧ (getRef_ret= NULL).
We have model checked these properties with models both for

collectors with an insertion barrier and a deletion barrier. We also
tried to model check the termination property.

P3 (Termination) GC eventually terminates.

inline getRef(i, ret) {
do::(refState == NORMAL ||

refState == REPEAT) ->
if::CLEARED[i] -> ret = NULL

::else -> ret = i
fi;
break

::(refState == TRACING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

CAS(refState, TRACING, REPEAT)
/* continue */

::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i;
break

::else ->
ret = NULL;
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fi
::(refState == CLEANING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

ret = NULL
::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i

::else -> ret = NULL
fi;
break

od;
d_step { /* d_step is an atomic action */

getRef_arg = i;
getRef_ret = ret

};
}

Figure 9: Promela model of a Reference.get() method with an
insertion barrier

However, we found that, with an insertion barrier, the mutator
can continually prevent the collector from breaking out of the
termination loop, even if we assume weakly fair scheduling. The
reason for this is that, while the collector is tracing or checking
if the work queue is empty, a mutator has a chance to load a
white referent to a local variable x and then clear x. The mutator
changes refState to REPEAT when it loads a reference with get(),
thus forcing the collector to trace again. However, if the mutator
has cleared x, the collector will not find, and hence shade, a new
white referent: the number of white objects is not reduced and so
no progress is made. Fortunately, the deletion barrier version does
make progress, since get() shades white objects grey.

7. Evaluation
We built our OTF reference processing framework in Jikes RVM
and evaluated it with our new implementation of the Sapphire col-
lector [12], running DaCapo benchmarks that would run (10 from
the 2006 and 6 from the 2009 suite). All measurements were per-
formed on a 4-core, 3.4 GHz Intel Core i7-4770 CPU running
Ubuntu Linux 12.04.4.

7.1 Reference Type Usage
To understand the behaviour of the benchmarks, we measured how
often reference types were used. Fig. 10 shows the number of calls
of a get() method per second in each 10 ms time window; the x-
axis is the normalised elapsed time of the program.



Race
• Mutator makes an object strongly reachable

• Collector clears weak reference
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CAS=> REPEAT

get()
ack

CAS=>fail

req
CAS=>CLEARING

handshake-1

• Handshake ensure that GC changes to TRACING after 
the get() that change the state to REPEAT returned

• Second handshake ensures all mutators acknowledge  GC 
is in TRACING

• CAS tells which thread won the race

→ TRACING

handshake-2


