
Reference Object Processing in
On-The-Fly Garbage Collection

Tomoharu Ugawa, Kochi University of Technology
Richard Jones, Carl Ritson, University of Kent

Weak Pointers
• Weak pointers are a mechanism to allow mutators to

communicate with GC

• java.lang.ref.Reference

• Specification requires us to process weak references
atomically from the view point of mutators

• Fully concurrent (on-the-fly) GC never stops all
mutators

Java reference types
• Strong - usual references.

• Soft - used for caches that the GC can reclaim.

• Weak - used for canonicalize mappings (e.g., interned
strings) that do not prevent GC from reclaiming their
keys or values.

• Phantom - used for scheduling pre-mortem cleanup
actions more flexibility than finalisers.

stronger

weaker

Java reference types
• Strong - usual references.

• Soft - used for caches that the GC can reclaim.

• Weak - used for canonicalize mapping (e.g., interned
strings) that do not prevent GC from reclaiming their
keys or values.

• Phantom - used for scheduling pre-mortem cleanup
actions more flexibility than finalisers.

stronger

weaker

reduce to strong/weak references

no interaction with mutators

Reachability strongly
reachable

Strongly - can be reached without traversing any
other references.
Weakly - not strongly reachable but can be
reached by traversing weak references.

• No formal specification

• Specification is written in English.

• There are errors in implementations

• We formalised the specification

root

strong
reference

weak
reference

strongly
reachableGC actions

The GC finds all strongly reachable objects and
reclaims others.

The GC “clears” references whose referents are
weakly reachable.

• Weak reference to Strongly - to be retained

• Weak reference to Weakly - to be cleared

root

strongly
reachableReference.get()

Reference.get() - returns a strong reference to its
target or null if the GC has cleared.

get() may make some objects that were weakly
reachable strongly reachable.

Reference
object

Normal
object

root

strongly
reachable

root

get()

Reference.get()

Reference.get() - returns a strong reference to its
target or null if the GC has cleared.

get() may make some objects that were weakly
reachable strongly reachable.

Reference
object

Normal
object

Race
A BO

Race

• Collector clears weak reference A

A BO

Race

• Collector clears weak reference A

A BO
get()

Race

• Collector clears weak reference A
• Mutator makes O strongly reachable by creating a strong

reference to the upstream

A O B
get()

from the OpenJDK mailing list
“I've been tuning a Java 7u51, Solaris 10, T4 system
with 24G heap. My customer is not very happy with
the remark pauses of up to 2 seconds.” Thomas Viessmann

“It looks like the application is using a
lot of Reference objects. The time
spent in remark is dominated by
reference processing.” Bengt Rutisson

1

2

0

Pauses (sec)

blue: reference processing

Solutions
• Stop the world - Pauseless GC [Click et al., 2005], Staccato

[McCloskey et al., 2008]

• Stop all mutators and process references

• Lock - “On-the-fly” GC [Domani et al., 2000]

• Block any mutator that calls get()

• On-the-fly - Metronome-TS [Auerbach et al., 2008]

• Implementation technique is not public

GC and mutator race in TRACING

• GC want to finish tracing and then start clearing

• Mutator force GC to do more work

Global GC State

NORMAL TRACING CLEARING

REPEAT

get() start tracing

no tracing workstart tracing

by collector

by collector (atomic)

by mutator (atomic)

GC traces strongly
reachable objects

• GC traverses strong references

• to colour strongly reachable objects black

• Write barrier

• insertion barrier [Dijkstra]

• deletion barrier (a.k.a. snapshot) [Yuasa]

• Read barrier for Reference.get()

TRACING State

NORMAL TRACING CLEARING

REPEAT

• GC traverses strong references

• to colour strongly reachable objects black

• Write barrier

• insertion barrier [Dijkstra]

• deletion barrier (a.k.a. snapshot) [Yuasa]

• Read barrier for Reference.get()

TRACING State

NORMAL TRACING CLEARING

REPEAT

Insertion Barrier
INVARIANT: Root is grey (allows root to refer
to white objects)

• GC repeat tracing until it finds root black

• Reference.get() changes the state to REPEAT
to notify the GC that the root may not be
black NORMAL TRACING CLEARING

REPEAT

get()
root

Deletion Barrier
INVARIANT: Root is black --- root is never rescanned

• Reference.get() colours target grey

• Reference.get() changes the state to REPEAT
to notify the GC that the root may not be
black NORMAL TRACING CLEARING

REPEAT

get()
root

CLEARING
Once GC enters CLEARING state

• Reference.get() returns null if its target is white

• no more objects become strongly reachable

• GC clears weak references whose targets
are white NORMAL TRACING CLEARING

REPEAT

get() returns null

Evaluation
• Jikes RVM

• Sapphire on-the-fly copying collector

• Trigger GC immediately after the previous GC
completes

• Configuration

• Core i7-4770 (4-core, 3.4 GHz)

• 1 GB heap

• 2 collector threads

• Stop-the-world GC, or

• Block mutator.get() with “lock”

Pause Time distribution

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW

lock ins

lock del

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW

lock ins

lock del

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW

lock ins

lock del

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW

lock ins

lock delFr
eq

ue
nc

y
(%

)

Pause times (ms)

jython2006 lusearch2009

sunflow2009 xalan2009pmd2009

avrora2009
 0.1

 1

 10

 100

 0 6 12 18 24 30

STW

lock ins

lock del

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW

lock ins

lock del

3ms
buckets

Note
logarithmic

scale

Pause Time distribution

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW

lock ins

lock del

xalan2009

Pause time

Reference Processing
 Phase Time

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW

lock ins

lock del

 0.1

 1

 10

 100

 0 30 60 90 120 150 180 210 240 270 300

STW

lock ins

lock del

 0.1

 1

 10

 100

 0 6 12 18 24 30

STW

lock ins

lock del

 0.1

 1

 10

 100

 0 6 12 18 24 30

OTF ins

OTF del

 0.1

 1

 10

 100

 0 30 60 90 120 150 180 210 240 270 300

OTF ins

OTF del

 0.1

 1

 10

 100

 0 6 12 18 24 30

OTF ins

OTF del

Mutators blocked Mutators running

lusearch2009

xalan2009

avrora2009

Execution times

Conclusion
• Reference types are frequently used in a significant

number of programs.

• On-the-fly GC must not ignore reference types.

• Formalised the definition of reference types.

• On-the-fly reference processing.

• Model checked with SPIN.

• Implemented in Jikes RVM.

• On-the-fly reference processing phases are longer in the
worst case, but with deletion barrier, not by much.

• Overall execution time is not increased significantly by
processing references on-the-fly, and is often reduced.

http://github.com/perlfu/sapphire

Questions?

Reference type usage

0

1

2
T = 3790ms

xalan2009

0

1

2
T = 4480ms

sunflow2009

0

1

2
T = 3005ms

pmd2009

0

1

2
T = 4139ms

lusearch2009

0

1

2
T = 2651ms

luindex2009

0

1

2
T = 5112ms

avrora2009

0

1

2
T = 13639

ms

Jython2006

x-axis:
Normalised

 execution time

C
al

ls
 t

o
ge

t(
)

pe
r

m
se

c
x

10
3

• Model checked with SPIN

• Correctness:
appears to mutators to be processed by GC atomically

• Terminates only with deletion barrier

Model Checking

root

reference objects

normal objectsx

r


r


r


o


o


o


Figure 7: The model

while(true) {
int i = random.nextInt(5);
switch (i) {
case 0: x = vr0.get(); break;
case 1: x = vr1.get(); break;
case 2: x = vr2.get(); break;
case 3: if (x != null) x = x.next; break;
case 4: x = null; break;

}
}

Figure 8: Simple mutator

since o is weakly-reachable through w, the mutator may also see o,
contrary to P2.!

Since bounded model checking does not deal with infinite state,
we checked the properties for the limited model shown in Fig. 7.
This model has three pairs of reference and normal objects, namely
r0, r1, r2 for references and o0, o1, o2 for the corresponding nor-
mal objects. These normal objects are linked in a list, but there are
no other strong references to them. We assumed that all reference
objects remain directly strongly reachable from the root and that
the mutator can always call get() methods on them.

Fig. 8 shows the mutator’s pseudocode: vri is a local variable
whose value is a reference object ri, and x is another local variable.
The mutator repeatedly and arbitrarily calls a get() method to load
the referent to x, loads the ‘next’ object of x, or clears x. Since we
focus on the behaviour of references, the mutator does not write to
any object. Thus, our model does not have write barriers.

Fig. 9 shows the model of the get() method on the reference
object ri, for a collector using an insertion barrier. This model is
faithful to Fig. 4. The return value is passed to the caller through
the parameter ret . mark[i] and CLEARED[i] represent the colour of
oi and whether ri has been cleared or not, respectively. When get()
returns oi, it sets i to ret . In order to check P2, the model also puts
i and ret in global variables getRef_arg and getRef_ret.

For the collector side, our model is faithful to the pseudocode
in Fig. 3 and 5. At the end of a cycle, the collector reclaims white
objects by calling reclaim(): we introduce a fourth object state
RECLAIMED. Our model of reclaim() reclaims white objects and
reverts the black objects to white. P1 and P2 can be interpreted as:

P1 !((x != NULL) =⇒ (mark[x] != RECLAIMED))

P2 !(RETNULLi =⇒ ¬♦(x = i)) (i = 1, 2, 3)

where RETNULLi ≡(getRef_arg= i)∧ (getRef_ret= NULL).
We have model checked these properties with models both for

collectors with an insertion barrier and a deletion barrier. We also
tried to model check the termination property.

P3 (Termination) GC eventually terminates.

inline getRef(i, ret) {
do::(refState == NORMAL ||

refState == REPEAT) ->
if::CLEARED[i] -> ret = NULL

::else -> ret = i
fi;
break

::(refState == TRACING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

CAS(refState, TRACING, REPEAT)
/* continue */

::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i;
break

::else ->
ret = NULL;
break

fi
::(refState == CLEANING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

ret = NULL
::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i

::else -> ret = NULL
fi;
break

od;
d_step { /* d_step is an atomic action */

getRef_arg = i;
getRef_ret = ret

};
}

Figure 9: Promela model of a Reference.get() method with an
insertion barrier

However, we found that, with an insertion barrier, the mutator
can continually prevent the collector from breaking out of the
termination loop, even if we assume weakly fair scheduling. The
reason for this is that, while the collector is tracing or checking
if the work queue is empty, a mutator has a chance to load a
white referent to a local variable x and then clear x. The mutator
changes refState to REPEAT when it loads a reference with get(),
thus forcing the collector to trace again. However, if the mutator
has cleared x, the collector will not find, and hence shade, a new
white referent: the number of white objects is not reduced and so
no progress is made. Fortunately, the deletion barrier version does
make progress, since get() shades white objects grey.

7. Evaluation
We built our OTF reference processing framework in Jikes RVM
and evaluated it with our new implementation of the Sapphire col-
lector [12], running DaCapo benchmarks that would run (10 from
the 2006 and 6 from the 2009 suite). All measurements were per-
formed on a 4-core, 3.4 GHz Intel Core i7-4770 CPU running
Ubuntu Linux 12.04.4.

7.1 Reference Type Usage
To understand the behaviour of the benchmarks, we measured how
often reference types were used. Fig. 10 shows the number of calls
of a get() method per second in each 10 ms time window; the x-
axis is the normalised elapsed time of the program.

Properties
• No dangling pointer is created

• If a variable is not null, its target has not been reclaimed

• Once get() of a Reference returns null, it will never
returns its target

root

reference objects

normal objectsx

r


r


r


o


o


o


Figure 7: The model

while(true) {
int i = random.nextInt(5);
switch (i) {
case 0: x = vr0.get(); break;
case 1: x = vr1.get(); break;
case 2: x = vr2.get(); break;
case 3: if (x != null) x = x.next; break;
case 4: x = null; break;

}
}

Figure 8: Simple mutator

since o is weakly-reachable through w, the mutator may also see o,
contrary to P2.!

Since bounded model checking does not deal with infinite state,
we checked the properties for the limited model shown in Fig. 7.
This model has three pairs of reference and normal objects, namely
r0, r1, r2 for references and o0, o1, o2 for the corresponding nor-
mal objects. These normal objects are linked in a list, but there are
no other strong references to them. We assumed that all reference
objects remain directly strongly reachable from the root and that
the mutator can always call get() methods on them.

Fig. 8 shows the mutator’s pseudocode: vri is a local variable
whose value is a reference object ri, and x is another local variable.
The mutator repeatedly and arbitrarily calls a get() method to load
the referent to x, loads the ‘next’ object of x, or clears x. Since we
focus on the behaviour of references, the mutator does not write to
any object. Thus, our model does not have write barriers.

Fig. 9 shows the model of the get() method on the reference
object ri, for a collector using an insertion barrier. This model is
faithful to Fig. 4. The return value is passed to the caller through
the parameter ret . mark[i] and CLEARED[i] represent the colour of
oi and whether ri has been cleared or not, respectively. When get()
returns oi, it sets i to ret . In order to check P2, the model also puts
i and ret in global variables getRef_arg and getRef_ret.

For the collector side, our model is faithful to the pseudocode
in Fig. 3 and 5. At the end of a cycle, the collector reclaims white
objects by calling reclaim(): we introduce a fourth object state
RECLAIMED. Our model of reclaim() reclaims white objects and
reverts the black objects to white. P1 and P2 can be interpreted as:

P1 !((x != NULL) =⇒ (mark[x] != RECLAIMED))

P2 !(RETNULLi =⇒ ¬♦(x = i)) (i = 1, 2, 3)

where RETNULLi ≡(getRef_arg= i)∧ (getRef_ret= NULL).
We have model checked these properties with models both for

collectors with an insertion barrier and a deletion barrier. We also
tried to model check the termination property.

P3 (Termination) GC eventually terminates.

inline getRef(i, ret) {
do::(refState == NORMAL ||

refState == REPEAT) ->
if::CLEARED[i] -> ret = NULL

::else -> ret = i
fi;
break

::(refState == TRACING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

CAS(refState, TRACING, REPEAT)
/* continue */

::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i;
break

::else ->
ret = NULL;
break

fi
::(refState == CLEANING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

ret = NULL
::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i

::else -> ret = NULL
fi;
break

od;
d_step { /* d_step is an atomic action */

getRef_arg = i;
getRef_ret = ret

};
}

Figure 9: Promela model of a Reference.get() method with an
insertion barrier

However, we found that, with an insertion barrier, the mutator
can continually prevent the collector from breaking out of the
termination loop, even if we assume weakly fair scheduling. The
reason for this is that, while the collector is tracing or checking
if the work queue is empty, a mutator has a chance to load a
white referent to a local variable x and then clear x. The mutator
changes refState to REPEAT when it loads a reference with get(),
thus forcing the collector to trace again. However, if the mutator
has cleared x, the collector will not find, and hence shade, a new
white referent: the number of white objects is not reduced and so
no progress is made. Fortunately, the deletion barrier version does
make progress, since get() shades white objects grey.

7. Evaluation
We built our OTF reference processing framework in Jikes RVM
and evaluated it with our new implementation of the Sapphire col-
lector [12], running DaCapo benchmarks that would run (10 from
the 2006 and 6 from the 2009 suite). All measurements were per-
formed on a 4-core, 3.4 GHz Intel Core i7-4770 CPU running
Ubuntu Linux 12.04.4.

7.1 Reference Type Usage
To understand the behaviour of the benchmarks, we measured how
often reference types were used. Fig. 10 shows the number of calls
of a get() method per second in each 10 ms time window; the x-
axis is the normalised elapsed time of the program.

root

reference objects

normal objectsx

r


r


r


o


o


o


Figure 7: The model

while(true) {
int i = random.nextInt(5);
switch (i) {
case 0: x = vr0.get(); break;
case 1: x = vr1.get(); break;
case 2: x = vr2.get(); break;
case 3: if (x != null) x = x.next; break;
case 4: x = null; break;

}
}

Figure 8: Simple mutator

since o is weakly-reachable through w, the mutator may also see o,
contrary to P2.!

Since bounded model checking does not deal with infinite state,
we checked the properties for the limited model shown in Fig. 7.
This model has three pairs of reference and normal objects, namely
r0, r1, r2 for references and o0, o1, o2 for the corresponding nor-
mal objects. These normal objects are linked in a list, but there are
no other strong references to them. We assumed that all reference
objects remain directly strongly reachable from the root and that
the mutator can always call get() methods on them.

Fig. 8 shows the mutator’s pseudocode: vri is a local variable
whose value is a reference object ri, and x is another local variable.
The mutator repeatedly and arbitrarily calls a get() method to load
the referent to x, loads the ‘next’ object of x, or clears x. Since we
focus on the behaviour of references, the mutator does not write to
any object. Thus, our model does not have write barriers.

Fig. 9 shows the model of the get() method on the reference
object ri, for a collector using an insertion barrier. This model is
faithful to Fig. 4. The return value is passed to the caller through
the parameter ret . mark[i] and CLEARED[i] represent the colour of
oi and whether ri has been cleared or not, respectively. When get()
returns oi, it sets i to ret . In order to check P2, the model also puts
i and ret in global variables getRef_arg and getRef_ret.

For the collector side, our model is faithful to the pseudocode
in Fig. 3 and 5. At the end of a cycle, the collector reclaims white
objects by calling reclaim(): we introduce a fourth object state
RECLAIMED. Our model of reclaim() reclaims white objects and
reverts the black objects to white. P1 and P2 can be interpreted as:

P1 !((x != NULL) =⇒ (mark[x] != RECLAIMED))

P2 !(RETNULLi =⇒ ¬♦(x = i)) (i = 1, 2, 3)

where RETNULLi ≡(getRef_arg= i)∧ (getRef_ret= NULL).
We have model checked these properties with models both for

collectors with an insertion barrier and a deletion barrier. We also
tried to model check the termination property.

P3 (Termination) GC eventually terminates.

inline getRef(i, ret) {
do::(refState == NORMAL ||

refState == REPEAT) ->
if::CLEARED[i] -> ret = NULL

::else -> ret = i
fi;
break

::(refState == TRACING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

CAS(refState, TRACING, REPEAT)
/* continue */

::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i;
break

::else ->
ret = NULL;
break

fi
::(refState == CLEANING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

ret = NULL
::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i

::else -> ret = NULL
fi;
break

od;
d_step { /* d_step is an atomic action */

getRef_arg = i;
getRef_ret = ret

};
}

Figure 9: Promela model of a Reference.get() method with an
insertion barrier

However, we found that, with an insertion barrier, the mutator
can continually prevent the collector from breaking out of the
termination loop, even if we assume weakly fair scheduling. The
reason for this is that, while the collector is tracing or checking
if the work queue is empty, a mutator has a chance to load a
white referent to a local variable x and then clear x. The mutator
changes refState to REPEAT when it loads a reference with get(),
thus forcing the collector to trace again. However, if the mutator
has cleared x, the collector will not find, and hence shade, a new
white referent: the number of white objects is not reduced and so
no progress is made. Fortunately, the deletion barrier version does
make progress, since get() shades white objects grey.

7. Evaluation
We built our OTF reference processing framework in Jikes RVM
and evaluated it with our new implementation of the Sapphire col-
lector [12], running DaCapo benchmarks that would run (10 from
the 2006 and 6 from the 2009 suite). All measurements were per-
formed on a 4-core, 3.4 GHz Intel Core i7-4770 CPU running
Ubuntu Linux 12.04.4.

7.1 Reference Type Usage
To understand the behaviour of the benchmarks, we measured how
often reference types were used. Fig. 10 shows the number of calls
of a get() method per second in each 10 ms time window; the x-
axis is the normalised elapsed time of the program.root

reference objects

normal objectsx

r


r


r


o


o


o


Figure 7: The model

while(true) {
int i = random.nextInt(5);
switch (i) {
case 0: x = vr0.get(); break;
case 1: x = vr1.get(); break;
case 2: x = vr2.get(); break;
case 3: if (x != null) x = x.next; break;
case 4: x = null; break;

}
}

Figure 8: Simple mutator

since o is weakly-reachable through w, the mutator may also see o,
contrary to P2.!

Since bounded model checking does not deal with infinite state,
we checked the properties for the limited model shown in Fig. 7.
This model has three pairs of reference and normal objects, namely
r0, r1, r2 for references and o0, o1, o2 for the corresponding nor-
mal objects. These normal objects are linked in a list, but there are
no other strong references to them. We assumed that all reference
objects remain directly strongly reachable from the root and that
the mutator can always call get() methods on them.

Fig. 8 shows the mutator’s pseudocode: vri is a local variable
whose value is a reference object ri, and x is another local variable.
The mutator repeatedly and arbitrarily calls a get() method to load
the referent to x, loads the ‘next’ object of x, or clears x. Since we
focus on the behaviour of references, the mutator does not write to
any object. Thus, our model does not have write barriers.

Fig. 9 shows the model of the get() method on the reference
object ri, for a collector using an insertion barrier. This model is
faithful to Fig. 4. The return value is passed to the caller through
the parameter ret . mark[i] and CLEARED[i] represent the colour of
oi and whether ri has been cleared or not, respectively. When get()
returns oi, it sets i to ret . In order to check P2, the model also puts
i and ret in global variables getRef_arg and getRef_ret.

For the collector side, our model is faithful to the pseudocode
in Fig. 3 and 5. At the end of a cycle, the collector reclaims white
objects by calling reclaim(): we introduce a fourth object state
RECLAIMED. Our model of reclaim() reclaims white objects and
reverts the black objects to white. P1 and P2 can be interpreted as:

P1 !((x != NULL) =⇒ (mark[x] != RECLAIMED))

P2 !(RETNULLi =⇒ ¬♦(x = i)) (i = 1, 2, 3)

where RETNULLi ≡(getRef_arg= i)∧ (getRef_ret= NULL).
We have model checked these properties with models both for

collectors with an insertion barrier and a deletion barrier. We also
tried to model check the termination property.

P3 (Termination) GC eventually terminates.

inline getRef(i, ret) {
do::(refState == NORMAL ||

refState == REPEAT) ->
if::CLEARED[i] -> ret = NULL

::else -> ret = i
fi;
break

::(refState == TRACING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

CAS(refState, TRACING, REPEAT)
/* continue */

::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i;
break

::else ->
ret = NULL;
break

fi
::(refState == CLEANING) ->
if::(!CLEARED[i] && (mark[i] == WHITE)) ->

ret = NULL
::(!CLEARED[i] && (mark[i] != WHITE)) ->
ret = i

::else -> ret = NULL
fi;
break

od;
d_step { /* d_step is an atomic action */

getRef_arg = i;
getRef_ret = ret

};
}

Figure 9: Promela model of a Reference.get() method with an
insertion barrier

However, we found that, with an insertion barrier, the mutator
can continually prevent the collector from breaking out of the
termination loop, even if we assume weakly fair scheduling. The
reason for this is that, while the collector is tracing or checking
if the work queue is empty, a mutator has a chance to load a
white referent to a local variable x and then clear x. The mutator
changes refState to REPEAT when it loads a reference with get(),
thus forcing the collector to trace again. However, if the mutator
has cleared x, the collector will not find, and hence shade, a new
white referent: the number of white objects is not reduced and so
no progress is made. Fortunately, the deletion barrier version does
make progress, since get() shades white objects grey.

7. Evaluation
We built our OTF reference processing framework in Jikes RVM
and evaluated it with our new implementation of the Sapphire col-
lector [12], running DaCapo benchmarks that would run (10 from
the 2006 and 6 from the 2009 suite). All measurements were per-
formed on a 4-core, 3.4 GHz Intel Core i7-4770 CPU running
Ubuntu Linux 12.04.4.

7.1 Reference Type Usage
To understand the behaviour of the benchmarks, we measured how
often reference types were used. Fig. 10 shows the number of calls
of a get() method per second in each 10 ms time window; the x-
axis is the normalised elapsed time of the program.

Race
• Mutator makes an object strongly reachable

• Collector clears weak reference

strongly
reachable

not strongly
reachable

not cleared

cleared

target object

weak
reference

get()
GC

Answer

CAS=> REPEAT

get()
ack

CAS=>fail

req
CAS=>CLEARING

handshake-1

• Handshake ensure that GC changes to TRACING after
the get() that change the state to REPEAT returned

• Second handshake ensures all mutators acknowledge GC
is in TRACING

• CAS tells which thread won the race

→ TRACING

handshake-2

