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Motivation

• Real-time GC is indispensable for real-time 
applications

• Real-time GC requires much memory if the 
application allocates objects of various sizes

• Real-time mark-sweep GC
→ suffer from fragmentation

• Real-time semi-space copying GC
→ twice as much memory as live objects

• Real-time mark-compact GC
→ large overhead (execution time)



Partial Compaction
We developed a “partial compaction” by evacuation

• To be combined with mark-sweep GC

• Evacuate only a part of the heap

• to create a large contiguous free area

• to eliminate fragmentation



Partial Compaction
after mark-sweep GC,

1. Choose an area as the evacuation area (EA)

2. Relocate objects in the EA

3. Reclaim the EA as a large contiguous free area

A B

evacuation area
object

heap



Partial Compaction
after mark-sweep GC,

1. Choose an area as the evacuation area (EA)

2. Relocate objects in the EA

3. Reclaim the EA as a large contiguous free area

A BAʼ Bʼ



Partial Compaction
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Required Memory
EA is only a part of the heap
→ space for copies can be
     smaller than semi-space copying GC

Smaller EA  

• smaller space for copies

• less effective for eliminating fragmentation

A BAʼ Bʼ



Problems

• How large the EA should be?

• Where in the heap should the GC choose the EA?

• How large the heap should be to avoid starvation?

A BAʼ Bʼ

starvation:
failure of allocation due to lack of memory or
lack of contiguous memory
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• Model of application, allocator, and GC

• Basic Idea
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Real-time mark-sweep GC

• incremental update [Steele ’75]

• on-the-fly [Dijkstra et al. ’78]

• snapshot-at-the-beginning [Yuasa ’90]

cannot bound heap size in cases
where objects of various sizes are allocated

Related Work



Real-time semi-space copying GC

• with read barrier [Baker ’78]

• replication-based [Nettles and O’Toole ’93]

• in multi-processor settings [Cheng et al. ’01]

require more than twice as much memory as the 
amount of live objects

Related Work



Partial compaction by evacuation (1/3)

• Metronome [Bacon ’03]

• Immix [Blackburn and McKinley ’08]

choose several discontiguous areas as the EA

→ cannot allocate large memory chunk

Related Work



Partial compaction by evacuation (2/3)

• Sapphire [Hudson and Moss ’01]

• Open VM [Kalibera ’09]

do not have any idea about where to choose the EA

Related Work

?



Partial compaction by evacuation (3/3)

• Replication-based compaction [Ugawa et al. ’10]

chooses the EA that is effective for defragmentation

Cannot bound the heap size 

Related Work

?
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• Application creates objects of different sizes

• All objects can be relocated

• No ambiguous pointers

• No pinned objects

• Max(amount of reachable (i.e. live) objects) ≤ R

Application Model



• A single “unstructured” heap

• Not divided into pages or segments
(page boundaries do not have significant meaning)

• Objects can be allocated anywhere in the heap

• Every object occupies a contiguous memory area
regardless of its size

Allocator Model



• Compaction after mark-sweep GC

1. Mark phase

2. Sweep phase

3. Compaction phase

• Incremental GC

• Perform GC little by little each time an object is 
allocated

• Amount of allocation during a single GC cycle ≤ a

Collector Model



• Mark and sweep phases collect garbage

• Independent of barriers for incremental marking

Before Compaction



Step 1: Choose the EA (location and size)

Compaction Steps



Step 1: Choose the EA (location and size)

Step 2: Relocate objects in the EA

• Independent of barrier for relocating incrementally

Compaction Steps



Step 1: Choose the EA (location and size) 

Step 2: Relocate objects in the EA

• Independent of barrier for relocating incrementally 

Step 3: Reclaim the EA as a large contiguous free area

Compaction Steps



Goal

• Give a strategy for choosing the EA

• Estimate the required heap size to avoid starvation
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Reserved Free Area

• Reserve a contiguous free area for the next 
GC cycle

• Allocation in the area is prohibited until the 
next GC cycle is triggered

reserved
 areaA
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GC cycle
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Trigger GC cycle

• When an allocation of an object, x, is failed

• Allocate the object x in the reserved free area

• Trigger the GC cycle

A B

X

reserved
 area



Trigger GC cycle

• When an allocation of an object, x, is failed

• Allocate the object x in the reserved free area

• Trigger the GC cycle

A B X



GC cycle

• The reserved free area behaves as the to-space

• copying objects in the evacuation area

• Aʼ, Bʼ

• allocation by the application

• X, Y

A B Aʼ BʼX Y

EA



Next Reserved Area

• Use the EA as the next reserved free area

• Reserved free area has the same size as the 
previous EA

A B

Aʼ BʼX Y

Aʼ BʼX Y



Size of Evacuation Area

• Always choose the EA of a fixed size

• sizeof(from space) == sizeof(to space)

A B Aʼ BʼX Y



Overflow

If we chose the EA full of live objects,
the reserved free area would be exhausted

• Because application also allocates objects
in the area

A B

X Y

C A B C



Live Ratio
Define live ratio :
    fraction of the area occupied by live objects

Limit the live ratio of the EA by l

• We can guarantee that there is an area whose 
live ratio is less than l by adjusting the heap size
(because we know the amount of live objects ≤ R)

A B Aʼ BʼX Y

live ratio ≤ l

live ratio ≤ l



Estimation
We will estimate

• H –– heap size

• E –– size of the EA

• l  –– upper bound of the live ratio of the heap

We are given

• R –– maximum amount of live objects

• a –– upper bound of the amount of objects
        allocated during a single GC cycle



Size of Reserved Free Area

Memory consumption during GC ≤ a + lE

• a: Allocation by the application

• lE: Objects in the EA
     (to be copied to the reserved area)

Size of the reserved free area: F

A B Aʼ BʼX Y

E

a lE

Flive ratio ≤ l

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R
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(4)
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1 − l
(5)

1



Size of EA
Size of the EA, E,  should be as large as
      the size of the reserved free area, F

• Because the EA is used as the next reserved 
free area

By                      ,
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Heap Size

Required heap size H is 

F

H

R/l

amount of live objects ≤ R
live ratio ≤ l
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Adjusting Live Ratio
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Appropriate Live Ratio
Normalized heap size
when a/R = 1%

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1
live ratio

H/R

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

l =

√
R√

R +
√

a
(6)

1

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

1



Result
When the live ratio is appropriate, 
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Practical Settings
We looked over two cases where we cannot choose 
the candidate of the EA

case 1: candidate overlaps with the reserved area

case 2: candidate contains a part of an object
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Required Heap Size
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Future Work

• Implementation



Summary

• Gave a strategy to choose the EA

• Estimated the required heap size to avoid starvation

• Applicable to any partial compaction by evacuation

• Independent of barrier for incremental marking

• Independent of barrier for incremental relocation



Thank you

E-mail to: ugawa@cs.uec.ac.jp
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