
Starvation-Free Heap Size for
Replication-Based Incremental

Compacting Garbage Collection
Tomoharu Ugawa (The University of Electro-Communications)

Hideya Iwasaki (The University of Electro-Communications)
Taiichi Yuasa (Kyoto University)

Starvation-Free Heap Size for
Replication-Based Incremental

Compacting Garbage Collection
Tomoharu Ugawa (The University of Electro-Communications)

Hideya Iwasaki (The University of Electro-Communications)
Taiichi Yuasa (Kyoto University)

Motivation

• Real-time GC is indispensable for real-time
applications

• Real-time GC requires much memory if the
application allocates objects of various sizes

• Real-time mark-sweep GC
→ suffer from fragmentation

• Real-time semi-space copying GC
→ twice as much memory as live objects

• Real-time mark-compact GC
→ large overhead (execution time)

Partial Compaction
We developed a “partial compaction” by evacuation

• To be combined with mark-sweep GC

• Evacuate only a part of the heap

• to create a large contiguous free area

• to eliminate fragmentation

Partial Compaction
after mark-sweep GC,

1. Choose an area as the evacuation area (EA)

2. Relocate objects in the EA

3. Reclaim the EA as a large contiguous free area

A B

evacuation area
object

heap

Partial Compaction
after mark-sweep GC,

1. Choose an area as the evacuation area (EA)

2. Relocate objects in the EA

3. Reclaim the EA as a large contiguous free area

A BAʼ Bʼ

Partial Compaction
after mark-sweep GC,

1. Choose an area as the evacuation area (EA)

2. Relocate objects in the EA

3. Reclaim the EA as a large contiguous free area

A B

Required Memory
EA is only a part of the heap
→ space for copies can be
 smaller than semi-space copying GC

Smaller EA

• smaller space for copies

• less effective for eliminating fragmentation

A BAʼ Bʼ

Problems

• How large the EA should be?

• Where in the heap should the GC choose the EA?

• How large the heap should be to avoid starvation?

A BAʼ Bʼ

starvation:
failure of allocation due to lack of memory or
lack of contiguous memory

• Related work

• Model of application, allocator, and GC

• Basic Idea

• Strategy

• Analysis

• Practical setting

• Future work and summary

Outline

Real-time mark-sweep GC

• incremental update [Steele ’75]

• on-the-fly [Dijkstra et al. ’78]

• snapshot-at-the-beginning [Yuasa ’90]

cannot bound heap size in cases
where objects of various sizes are allocated

Related Work

Real-time semi-space copying GC

• with read barrier [Baker ’78]

• replication-based [Nettles and O’Toole ’93]

• in multi-processor settings [Cheng et al. ’01]

require more than twice as much memory as the
amount of live objects

Related Work

Partial compaction by evacuation (1/3)

• Metronome [Bacon ’03]

• Immix [Blackburn and McKinley ’08]

choose several discontiguous areas as the EA

→ cannot allocate large memory chunk

Related Work

Partial compaction by evacuation (2/3)

• Sapphire [Hudson and Moss ’01]

• Open VM [Kalibera ’09]

do not have any idea about where to choose the EA

Related Work

?

Partial compaction by evacuation (3/3)

• Replication-based compaction [Ugawa et al. ’10]

chooses the EA that is effective for defragmentation

Cannot bound the heap size

Related Work

?

• Related work

• Model of application, allocator, and GC

• Basic Idea

• Strategy

• Analysis

• Practical setting

• Future work and summary

Outline

• Application creates objects of different sizes

• All objects can be relocated

• No ambiguous pointers

• No pinned objects

• Max(amount of reachable (i.e. live) objects) ≤ R

Application Model

• A single “unstructured” heap

• Not divided into pages or segments
(page boundaries do not have significant meaning)

• Objects can be allocated anywhere in the heap

• Every object occupies a contiguous memory area
regardless of its size

Allocator Model

• Compaction after mark-sweep GC

1. Mark phase

2. Sweep phase

3. Compaction phase

• Incremental GC

• Perform GC little by little each time an object is
allocated

• Amount of allocation during a single GC cycle ≤ a

Collector Model

• Mark and sweep phases collect garbage

• Independent of barriers for incremental marking

Before Compaction

Step 1: Choose the EA (location and size)

Compaction Steps

Step 1: Choose the EA (location and size)

Step 2: Relocate objects in the EA

• Independent of barrier for relocating incrementally

Compaction Steps

Step 1: Choose the EA (location and size)

Step 2: Relocate objects in the EA

• Independent of barrier for relocating incrementally

Step 3: Reclaim the EA as a large contiguous free area

Compaction Steps

Goal

• Give a strategy for choosing the EA

• Estimate the required heap size to avoid starvation

• Related work

• Model of our GC

• Basic Idea

• Strategy

• Analysis

• Practical setting

• Future work and summary

Outline

Reserved Free Area

• Reserve a contiguous free area for the next
GC cycle

• Allocation in the area is prohibited until the
next GC cycle is triggered

reserved
 areaA

Reserved Free Area

• Reserve a contiguous free area for the next
GC cycle

• Allocation in the area is prohibited until the
next GC cycle is triggered

A B reserved
 area

Trigger GC cycle

• When an allocation of an object, x, is failed

• Allocate the object x in the reserved free area

• Trigger the GC cycle

A B

X

reserved
 area

Trigger GC cycle

• When an allocation of an object, x, is failed

• Allocate the object x in the reserved free area

• Trigger the GC cycle

A B X

GC cycle

• The reserved free area behaves as the to-space

• copying objects in the evacuation area

• Aʼ, Bʼ

• allocation by the application

• X, Y

A B Aʼ BʼX Y

EA

Next Reserved Area

• Use the EA as the next reserved free area

• Reserved free area has the same size as the
previous EA

A B

Aʼ BʼX Y

Aʼ BʼX Y

Size of Evacuation Area

• Always choose the EA of a fixed size

• sizeof(from space) == sizeof(to space)

A B Aʼ BʼX Y

Overflow

If we chose the EA full of live objects,
the reserved free area would be exhausted

• Because application also allocates objects
in the area

A B

X Y

C A B C

Live Ratio
Define live ratio :
 fraction of the area occupied by live objects

Limit the live ratio of the EA by l

• We can guarantee that there is an area whose
live ratio is less than l by adjusting the heap size
(because we know the amount of live objects ≤ R)

A B Aʼ BʼX Y

live ratio ≤ l

live ratio ≤ l

Estimation
We will estimate

• H –– heap size

• E –– size of the EA

• l –– upper bound of the live ratio of the heap

We are given

• R –– maximum amount of live objects

• a –– upper bound of the amount of objects
 allocated during a single GC cycle

Size of Reserved Free Area

Memory consumption during GC ≤ a + lE

• a: Allocation by the application

• lE: Objects in the EA
 (to be copied to the reserved area)

Size of the reserved free area: F

A B Aʼ BʼX Y

E

a lE

Flive ratio ≤ l

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H ≥ R

l
+

a

1 − l
(5)

1

Size of EA
Size of the EA, E, should be as large as
 the size of the reserved free area, F

• Because the EA is used as the next reserved
free area

By ,

F ≤ a + lE (1)

E ≤ a

1 − l
(2)

E = F (3)

1

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H ≥ R

l
+

a

1 − l
(5)

1

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H ≥ R

l
+

a

1 − l
(5)

1

Heap Size

Required heap size H is

F

H

R/l

amount of live objects ≤ R
live ratio ≤ l

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

1

Adjusting Live Ratio

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

1

too low:

appropriate:

too high:

Appropriate Live Ratio
Normalized heap size
when a/R = 1%

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1
live ratio

H/R

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

l =

√
R√

R +
√

a
(6)

1

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

1

Result
When the live ratio is appropriate,

H

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

l =

√
R√

R +
√

a
(6)

H =
R

l
+

a

1 − l
(7)

H = (R +
√

Ra) + (a +
√

Ra) (8)

H = R + 2
√

Ra + a (9)

1

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

l =

√
R√

R +
√

a
(6)

H =
R

l
+

a

1 − l
(7)

H = (R +
√

Ra) + (a +
√

Ra) (8)

H = R + 2
√

Ra + a (9)

1

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

l =

√
R√

R +
√

a
(6)

1

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

l =

√
R√

R +
√

a
(6)

H =
R

l
+

a

1 − l
(7)

H = (R +
√

Ra) + (a +
√

Ra) (8)

H = R + 2
√

Ra + a (9)

1E = F = a +
√

Ra (10)

2

Result
When the live ratio is appropriate,

H

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

l =

√
R√

R +
√

a
(6)

H =
R

l
+

a

1 − l
(7)

H = (R +
√

Ra) + (a +
√

Ra) (8)

H = R + 2
√

Ra + a (9)

1

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

l =

√
R√

R +
√

a
(6)

H =
R

l
+

a

1 − l
(7)

H = (R +
√

Ra) + (a +
√

Ra) (8)

H = R + 2
√

Ra + a (9)

1

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

l =

√
R√

R +
√

a
(6)

1

F ≥ a + lE (1)

E ≥ a

1 − l
(2)

E = F (3)

R

l
(4)

H =
R

l
+

a

1 − l
(5)

l =

√
R√

R +
√

a
(6)

H =
R

l
+

a

1 − l
(7)

H = (R +
√

Ra) + (a +
√

Ra) (8)

H = R + 2
√

Ra + a (9)

1E = F = a +
√

Ra (10)

2

E = F = a +
√

Ra (10)

l =

√
R√

R +
√

2a
(11)

H = R + 2
√

2Ra + 3a (12)

(13)

E = F = 2a + 2
√

2Ra (14)

lE =

√
R(R +

√
Ra)√

R +
√

a
(15)

=
√

Ra (16)

2

E = F = a +
√

Ra (10)

l =

√
R√

R +
√

2a
(11)

H = R + 2
√

2Ra + 3a (12)

(13)

E = F = 2a + 2
√

2Ra (14)

lE =

√
R(a +

√
Ra)√

R +
√

a
(15)

=
√

Ra (16)

2

• Related work

• Model of our GC

• Basic Idea

• Strategy

• Analysis

• Practical setting

• Future work and summary

Outline

Practical Settings
We looked over two cases where we cannot choose
the candidate of the EA

case 1: candidate overlaps with the reserved area

case 2: candidate contains a part of an object

Revised EstimationE = F = a +
√

Ra (10)

l =

√
R√

R +
√

2a
(11)

H = R + 2
√

2Ra + 3a (12)

(13)

E = F = 2a + 2
√

2Ra (14)

2

E = F = a +
√

Ra (10)

l =

√
R√

R +
√

2a
(11)

H = R + 2
√

2Ra + 3a (12)

(13)

E = F = 2a + 2
√

2Ra (14)

2

E = F = a +
√

Ra (10)

l =

√
R√

R +
√

2a
(11)

H = R + 2
√

2Ra + 3a (12)

(13)

E = F = 2a + 2
√

2Ra (14)

2

H

E = F = a +
√

Ra (10)

l =

√
R√

R +
√

2a
(11)

H = R + 2
√

2Ra + 3a (12)

(13)

E = F = 2a + 2
√

2Ra (14)

2

Required Heap Size

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.02 0.04 0.06 0.08 0.1

a/R; upper bound of allocation during a GC cycle

H/R

a/R = 7.5%

normalized
heap size

E/R

normalized
size of EA

Future Work

• Implementation

Summary

• Gave a strategy to choose the EA

• Estimated the required heap size to avoid starvation

• Applicable to any partial compaction by evacuation

• Independent of barrier for incremental marking

• Independent of barrier for incremental relocation

Thank you

E-mail to: ugawa@cs.uec.ac.jp

mailto:ugawa@cs.uec.ac.jp
mailto:ugawa@cs.uec.ac.jp

